SMAN 01 UNGGULAN KAMANRE
Powered By Blogger
Tampilkan postingan dengan label Matematika. Tampilkan semua postingan
Tampilkan postingan dengan label Matematika. Tampilkan semua postingan

Minggu, 27 Maret 2011

matematika

suku banyak

Nomor 1

matematika

Fungsi Invers
Matematika Kelas 1 >Relasi Fungsi / Komposisi Fungsi-Fungsi Invers
375
f : A ® B
Bila b Î B, maka invers dari elemen b (dinyatakan dengan f-1 (b)) adalah elemen A yang mempunyai pasangan b, atau
f-1 (b) = {x ½ x Î A, f(x) = b}
Jika f adalah fungsi dari A ® B, maka f mempunyai fungsi invers f-1 :A ® B jika dan hanya jika f adalah one one onto / bijektif / korespondensi 1-1
ket :
f : y = f(x)
cara mencari fungsi invers
f-1 : x = f(y) ® nyatakan x dalam y
TEOREMA
f : A ® B dan f-1 : B ® A
f-1 o f : A ® A : fungsi indentitas di A
   f    f-1          
A ® B ® A
  (f-1 o f)
f o f-1 : B ® B : fungsi identitas di B
  f-1   f
B ® A ® B
 (f o f-1)

matematika

Limit fungsi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Topik dalam kalkulus
Teorema dasar
Limit fungsi
Kekontinuan
Kalkulus vektor
Kalkulus matriks
Teorema nilai purata
Turunan
Kaidah darab
Kaidah hasil-bagi
Kaidah rantai
Turunan implisit
Teorema Taylor
Laju berhubungan
Tabel turunan
Integral
Tabel integral
Integral takwajar
Pengintegralan dengan:
bagian per bagian, cakram, silinder, substitusi,
substitusi trigonometri,
pecahan parsial
Limit suatu fungsi merupakan salah satu konsep mendasar dalam kalkulus dan analisis, tentang kelakuan suatu fungsi mendekati titik masukan tertentu.
Suatu fungsi memetakan keluaran f(x) untuk setiap masukan x. Fungsi tersebut memiliki limit L pada titik masukan p bila f(x) "dekat" pada L ketika x dekat pada p. Dengan kata lain, f(x) menjadi semakin dekat kepada L ketika x juga mendekat menuju p. Lebih jauh lagi, bila f diterapkan pada tiap masukan yang cukup dekat pada p, hasilnya adalah keluaran yang (secara sembarang) dekat dengan L. Bila masukan yang dekat pada p ternyata dipetakan pada keluaran yang sangat berbeda, fungsi f dikatakan tidak memiliki limit.
Definisi limit dirumuskan secara formal mulai abad ke-19.

Daftar isi

[sembunyikan]

[sunting] Sejarah

Meskipun termasuk secara implisit dalam pengembangan kalkulus pada abad ke-17 dan 18, gagasan modern limit fungsi baru dibahas oleh Bolzano, yang pada 1817, memperkenalkan dasar-dasar teknik epsilon-delta. [1] Namun karyanya tidak diketahui semasa hidupnya.
Cauchy membahas limit dalam karyanya Cours d'analyse (1821) dan tampaknya telah menyatakan intisari gagasan tersebut, tapi tidak secara sistematis. [2] Presentasi yang ketat terhadap khalayak ramai pertama kali diajukan oleh Weirstrass pada dasawarsa 1850-an dan 1860-an[3], dan sejak itu telah menjadi metode baku untuk menerangkan limit.
Notasi tertulis menggunakan singkatan lim dengan anak panah diperkenalkan oleh Hardy dalam bukunya A Course of Pure Mathematics pada tahun 1908.[2]

[sunting] Definisi

Berikut beberapa definisi limit fungsi yang umum diterima.

[sunting] Fungsi pada garis bilangan riil

Bila f : R \rightarrow R terdefinisi pada garis bilangan riil, dan p, L \in R maka kita menyebut limit f ketika x mendekati p adalah L, yang ditulis sebagai:
 \lim_{x \to p}f(x) = L
jika dan hanya jika untuk setiap ε > 0 terdapat δ > 0 sehingga |x - p|< δ mengimplikasikan bahwa |f (x) - L | < ε . Di sini, baik ε maupun δ merupakan bilangan riil. Perhatikan bahwa nilai limit tidak tergantung pada nilai f (p)

[sunting] Limit searah

Limit saat: x → x0+ ≠ x → x0-. Maka, limit x → x0 tidak ada.
Masukan x dapat mendekati p dari atas (kanan di garis bilangan) atau dari bawah (kiri). Dalam hal ini limit masing-masingnya dapat ditulis sebagai

 \lim_{x \to p^+}f(x) = L
atau
 \lim_{x \to p^-}f(x) = L
Bila kedua limit ini sama nilainya dengan L, maka L dapat diacu sebagai limit f(x) pada p . Sebaliknya, bila keduanya tidak bernilai sama dengan L, maka limit f(x) pada p tidak ada.
Definisi formal adalah sebagai berikut. Limit f(x) saat x mendekati p dari atas adalah L bila, untuk setiap ε > 0, terdapat sebuah bilangan δ > 0 sedemikian rupa sehingga |f(x) - L| < ε pada saat 0 < x - p < δ. Limit f(x) saat x mendekati p dari bawah adalah L bila, untuk setiap ε > 0, terdapat bilangan δ > 0 sehingga |f(x) - L| < ε bilamana 0 < p - x < δ.
Bila limitnya tidak ada terdapat osilasi matematis tidak nol.

[sunting] Limit fungsi pada ketakhinggaan

Limit fungsi ini ada pada ketakhinggaan.
Bila dua unsur, ketakhinggaan positif dan negatif {-∞, +∞}, ditambahkan pada garis bilangan riil, kita dapat mendefinisikan limit fungsi pada ketakhinggaan. Dua unsur tambahan ini bukanlah bilangan, namun berguna dalam memerikan kelakuan limit pada kalkulus dan analisis.
Bila f(x) adalah fungsi riil, maka limit f saat x mendekati tak hingga adalah L, dilambangkan sebagai:
 \lim_{x \to \infty}f(x) = L,
jika dan hanya jika untuk semua ε > 0 terdapat S > 0 sedemikian rupa sehingga |f (x) - L| < ε bilamana x > S.
Dengan cara yang sama, limit f saat x mendekati tak hingga adalah tak hingga, dilambangkan oleh
 \lim_{x \to \infty}f(x) = \infty,
jika dan hanya jika bila untuk semua R > 0 terdapat S > sedemikian sehingga f(x) > R bilamana x > S.

matematika

Trigonometri

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Trigonometri (dari bahasa Yunani trigonon = tiga sudut dan metro = mengukur) adalah sebuah cabang matematika yang berhadapan dengan sudut segi tiga dan fungsi trigonometrik seperti sinus, cosinus, dan tangen. Trigonometri memiliki hubungan dengan geometri, meskipun ada ketidaksetujuan tentang apa hubungannya; bagi beberapa orang, trigonometri adalah bagian dari geometri.

Daftar isi

[sembunyikan]

[sunting] Sejarah awal

Awal trigonometri dapat dilacak hingga zaman Mesir Kuno dan Babilonia dan peradaban Lembah Indus, lebih dari 3000 tahun yang lalu. Matematikawan India adalah perintis penghitungan variabel aljabar yang digunakan untuk menghitung astronomi dan juga trigonometri. Lagadha adalah matematikawan yang dikenal sampai sekarang yang menggunakan geometri dan trigonometri untuk penghitungan astronomi dalam bukunya Vedanga, Jyotisha, yang sebagian besar hasil kerjanya hancur oleh penjajah India.
Matematikawan Yunani Hipparchus sekitar 150 SM menyusun tabel trigonometri untuk menyelesaikan segi tiga.
Matematikawan Yunani lainnya, Ptolemy sekitar tahun 100 mengembangkan penghitungan trigonometri lebih lanjut.
Matematikawan Silesia Bartholemaeus Pitiskus menerbitkan sebuah karya yang berpengaruh tentang trigonometri pada 1595 dan memperkenalkan kata ini ke dalam bahasa Inggris dan Perancis.

[sunting] Trigonometri sekarang ini

Ada banyak aplikasi trigonometri. Terutama adalah teknik triangulasi yang digunakan dalam astronomi untuk menghitung jarak ke bintang-bintang terdekat, dalam geografi untuk menghitung antara titik tertentu, dan dalam sistem navigasi satelit.
Bidang lainnya yang menggunakan trigonometri termasuk astronomi (dan termasuk navigasi, di laut, udara, dan angkasa), teori musik, akustik, optik, analisis pasar finansial, elektronik, teori probabilitas, statistika, biologi, pencitraan medis/medical imaging (CAT scan dan ultrasound), farmasi, kimia, teori angka (dan termasuk kriptologi), seismologi, meteorologi, oseanografi, berbagai cabang dalam ilmu fisika, survei darat dan geodesi, arsitektur, fonetika, ekonomi, teknik listrik, teknik mekanik, teknik sipil, grafik komputer, kartografi, kristalografi.
Ada pengembangan modern trigonometri yang melibatkan "penyebaran" dan "quadrance", bukan sudut dan panjang. Pendekatan baru ini disebut trigonometri rasional dan merupakan hasil kerja dari Dr. Norman Wildberger dari Universitas New South Wales. Informasi lebih lanjut bisa dilihat di situs webnya [1].

[sunting] Hubungan fungsi trigonometri

\sin^2 A + \cos^2 A = 1 \,
1 + \tan^2 A = \frac{1}{\cos^2 A} = \sec^2 
A\,
1 + \cot^2 A = \csc^2 A \,
\tan A = \frac{\sin A}{\cos A}\,

[sunting] Penjumlahan

\sin (A + B) = \sin A \cos B + \cos A \sin B 
\,
\sin (A - B) = \sin A \cos B - \cos A \sin B 
\,
\cos (A + B) = \cos A \cos B - \sin A \sin B 
\,
\cos (A - B) = \cos A \cos B + \sin A \sin B 
\,
\tan (A + B) = \frac{\tan A + \tan B}{1 - \tan
 A \tan B} \,
\tan (A - B) = \frac{\tan A - \tan B}{1 + \tan
 A \tan B} \,

[sunting] Rumus sudut rangkap dua

\sin 2A = 2 \sin A \cos A \,
\cos 2A = \cos^2 A - \sin^2 A = 2 \cos^2 A -1 =
 1-2 \sin^2 A \,
\tan 2A = {2 \tan A \over 1 - \tan^2 A} = {2 
\cot A \over \cot^2 A - 1} = {2 \over \cot A - \tan A} \,

[sunting] Rumus sudut rangkap tiga

\sin 3A = 3 \sin A - 4 \sin^3 A \,
\cos 3A = 4 \cos^3 A - 3 \cos A \,

[sunting] Rumus setengah sudut

\sin \frac{A}{2} = \pm \sqrt{\frac{1-\cos 
A}{2}} \,
\cos \frac{A}{2} = \pm \sqrt{\frac{1+\cos 
A}{2}} \,
PENJUMLAHAN DUA SUDUT (a + b) sin(a + b)  = sin a cos b + cos a sin b cos(a + b) = cos a cos b - sin a sin b tg(a + b )   = tg a + tg b                  1 - tg2a SELISIH DUA SUDUT (a - b) sin(a - b)  = sin a cos b - cos a sin b cos(a - b) = cos a cos b + sin a sin b tg(a - b )   = tg a - tg b                  1 + tg2a SUDUT RANGKAP sin 2a  = 2 sin a cos a cos 2a = cos2a - sin2 a = 2 cos2a - 1 = 1 - 2 sin2a tg 2a  =  2 tg 2a              1 - tg2a sin a cos a = ½ sin 2a cos2a = ½(1 + cos 2a) sin2a  = ½ (1 - cos 2a) Secara umum : sin na  = 2 sin ½na cos ½na cos na = cos2 ½na - 1 = 2 cos2 ½na - 1 = 1 - 2 sin2 ½na tg na =   2 tg ½na              1 - tg2 ½na JUMLAH SELISIH DUA FUNGSI YANG SENAMA BENTUK PENJUMLAHAN ® PERKALIAN sin a + sin b   = 2 sin a + b    cos a - b                                 2              2 sin a - sin b   = 2 cos a + b    sin a - b                                 2             2 cos a + cos b = 2 cos a + b    cos a - b                                  2              2 cos a + cos b = - 2 sin a + b   sin a - b                                   2             2 BENTUK PERKALIAN ® PENJUMLAHAN 2 sin a cos b = sin (a + b) + sin (a - b) 2 cos a sin b = sin (a + b) - sin (a - b) 2 cos a cos b = cos (a + b) + cos (a - b) - 2 sin a cos b = cos (a + b) - sin (a - b) PENJUMLAHAN FUNGSI YANG BERBEDA Bentuk a cos x + b sin x Merubah bentuk a cos x + b sin x ke dalam bentuk K cos (x - a)
a cos x + b sin x = K cos (x-a)
dengan :                                   K = Öa2 + b2 dan tg a = b/a Þ a = ... ? Kuadran dari a ditentukan oleh kombinasi tanda a dan b sebagai berikut
I
II
III
IV
a
+
-
-
+
b
+
+
-
-
keterangan : a = koefisien cos x b = koefisien sin x
PERSAMAAN I. sin x = sin a Þ x1 = a + n.360°                          x2 = (180° - a) + n.360°     cos x = cos a Þ x = ± a + n.360° tg x = tg a Þ x = a + n.180°    (n = bilangan bulat)
II. a cos x + b sin x = c      a cos x + b sin x = C             K cos (x-a) = C                cos (x-a) = C/K      syarat persamaan ini dapat diselesaikan      -1 £ C/K £ 1 atau K² ³ (bila K dalam bentuk akar) misalkan C/K = cos b   cos (x - a) = cos b         (x - a) = ± b + n.360° ® x = (a ± b) + n.360°\tan \frac{A}{2} = \pm \sqrt{\frac{1-\cos 
A}{1+\cos A}} = \frac {\sin A}{1+\cos A} = \frac {1-\cos A}{\sin A} \,

mataematika

Lingkaran

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Elemen-elemen suatu lingkaran.
Dalam geometri Euklid, sebuah lingkaran adalah himpunan semua titik pada bidang dalam jarak tertentu, yang disebut jari-jari, dari suatu titik tertentu, yang disebut pusat. Lingkaran adalah contoh dari kurva tertutup sederhana, membagi bidang menjadi bagian dalam dan bagian luar.

Daftar isi

[sembunyikan]

[sunting] Elemen lingkaran

Elemen-elemen yang terdapat pada lingkaran, yaitu sbb:
  • n sebuah titik di dalam lingkaran yang menjadi acuan untuk menentukan jarak terhadap himpunan titik yang membangun lingkaran sehingga sama. Elemen lngkiaran yang berupa titik, yaitu :
    1. Titik pusat (P)
      merupakan jarak antara titik pusat dengan lingkaran harganya konstan dan disebut jari-jari.
  • Elemen lingkaran yang berupa garisan, yaitu :
    1. Jari-jari (R)
      merupakan garis lurus yang menghubungkan titik pusat dengan lingkaran.
    2. Tali busur (TB)
      merupakan garis lurus di dalam lingkaran yang memotong lingkaran pada dua titik yang berbeda (TB).
    3. Busur (B)
      merupakan garis lengkung baik terbuka, maupun tertutup yang berimpit dengan lingkaran.
    4. Keliling lingkaran (K)
      merupakan busur terpanjang pada lingkaran.
    5. Diameter (D)
      merupakan tali busur terbesar yang panjangnya adalah dua kali dari jari-jarinya. Diameter ini membagi lingkaran sama luas.
    6. Apotema
      merupakan garis terpendek antara tali busur dan pusat lingkaran.
  • Elemen lingkaran yang berupa luasan, yaitu :
    1. Juring (J)
      merupakan daerah pada lingkaran yang dibatasi oleh busur dan dua buah jari-jari yang berada pada kedua ujungnya.
    2. Tembereng (T)
      merupakan daerah pada lingkaran yang dibatasi oleh sebuah busur dengan tali busurnya.
    3. Cakram (C)
      merupakan semua daerah yang berada di dalam lingkaran. Luasnya yaitu jari-jari kuadrat dikalikan dengan pi. Cakram merupakan juring terbesar.

[sunting] Persamaan

Suatu lingkaran memiliki persamaan
(x - x_0)^2 + (y - y_0)^2 = R^2 \!
dengan R\! adalah jari-jari lingkaran dan (x_0,y_0)\! adalah koordinat pusat lingkaran.

[sunting] Persamaan parametrik

Lingkaran dapat pula dirumuskan dalam suatu persamaan parameterik, yaitu
x = x_0 + R \cos(t) \!
y = y_0 + R \sin(t) \!
yang apabila dibiarkan menjalani t akan dibuat suatu lintasan berbentuk lingkaran dalam ruang x-y.

[sunting] Luas lingkaran

Luas lingkaran
Luas lingkaran memiliki rumus
A = \pi R^2 \!
yang dapat diturunkan dengan melakukan integrasi elemen luas suatu lingkaran
dA = rd\theta\ dr
dalam koordinat polar, yaitu
\int dA = \int_{r=0}^R \int_{\theta=0}^{2\pi} 
rd\theta\ dr
= \int_{r=0}^R rdr \int_{\theta=0}^{2\pi} d\theta 
= \frac 1 2 (R^2-0^2) \ (2\pi-0) = \pi R^2 \!
Dengan cara yang sama dapat pula dihitung luas setengah lingkaran, seperempat lingkaran, dan bagian-bagian lingkaran. Juga tidak ketinggalan dapat dihitung luas suatu cincin lingkaran dengan jari-jari dalam R_1\! dan jari-jari luar R_2\!.

[sunting] Penjumlahan elemen juring

Area of a circle.svg
Luas lingkaran dapat dihitung dengan memotong-motongnya sebagai elemen-elemen dari suatu juring untuk kemudian disusun ulang menjadi sebuah persegi panjang yang luasnya dapat dengan mudah dihitung. Dalam gambar r berarti sama dengan R yaitu jari-jari lingkaran.

[sunting] Luas juring

Luas juring suatu lingkaran dapat dihitung apabila luas lingkaran dijadikan fungsi dari R dan θ, yaitu;
A(R,\theta) = \frac 1 2 R^2 \theta \!
dengan batasan nilai θ adalah antara 0 dan . Saat θ bernilai , juring yang dihitung adalah juring terluas, atau luas lingkaran.

[sunting] Luas cincin lingkaran

Suatu cincin lingkaran memiliki luas yang bergantung pada jari-jari dalam R_1\! dan jari-jari luar R_2\!, yaitu
A_{cincin} = \pi (R_2^2 - R_1^2) \!
di mana untuk R_1 = 0\! rumus ini kembali menjadi rumus luas lingkaran.

[sunting] Luas potongan cincin lingkaran

Dengan menggabungkan kedua rumus sebelumnya, dapat diperoleh
A_{potongan\ cincin} = \frac \pi 2 (R_2^2 - 
R_1^2) \theta \!
yang merupakan luas sebuah cincin tak utuh.

[sunting] Keliling lingkaran

Keliling lingkaran memiliki rumus:
L = 2\pi R\!

[sunting] Panjang busur lingkaran

Panjang busur suatu lingkaran dapat dihitung dengan menggunakan rumus
L = R \theta \!
yang diturunkan dari rumus untuk menghitung panjang suatu kurva
dL = \int \sqrt{1 + \left( 
\frac{dy}{dx}\right) ^2 } dx \!
di mana digunakan
y = \pm \sqrt{R^2 - x^2} \!
sebagai kurva yang membentuk lingkaran. Tanda \pm mengisyaratkan bahwa terdapat dua buah kurva, yaitu bagian atas dan bagian bawah. Keduanya identik (ingat definisi lingkaran), sehingga sebenarnya hanya perlu dihitung sekali dan hasilnya dikalikan dua.

[sunting] Pi atau π

Nilai pi adalah suatu besaran yang merupakan sifat khusus dari lingkaran, yaitu perbandingan dari keliling K dengan diameternya D:
 \pi = \frac K D